A multiscale sparse grid finite element method for a two-dimensional singularly perturbed reaction-diffusion problem
نویسندگان
چکیده
We consider the numerical solution of a singularly perturbed two-dimensional reactiondiffusion problem by a multiscale sparse grid finite element method. A Shishkin mesh which resolves the boundary and corner layers, and yields a parameter robust solution, is used. Our analysis shows that the method achieves essentially the same accuracy as the standard Galerkin finite element method, but does so at a much lower computational cost.
منابع مشابه
Two-grid algorithms for singularly perturbed reaction-diffusion problems on layer adapted meshes
We propose a new two-grid approach based on Bellman-Kalaba quasilinearization [6] and Axelsson [4]-Xu [30] finite element two-grid method for the solution of singularly perturbed reaction-diffusion equations. The algorithms involve solving one inexpensive problem on coarse grid and solving on fine grid one linear problem obtained by quasilinearization of the differential equation about an inter...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملConvergence Analysis of a Multiscale Finite Element Method for Singularly Perturbed Problems
Abstract. In this paper we perform an error analysis for a multiscale finite element method for singularly perturbed reaction–diffusion equation. Such method is based on enriching the usual piecewise linear finite element trial spaces with local solutions of the original problem, but do not require these functions to vanish on each element edge. Bubbles are the choice for the test functions all...
متن کاملConvergence Analysis of Finite Element Solution of One-dimensional Singularly Perturbed Differential Equations on Equidistributing Meshes
In this paper convergence on equidistributing meshes is investigated. Equidistributing meshes, or more generally approximate equidistributing meshes, are constructed through the well-known equidistribution principle and a so-called adaptation (or monitor) function which is defined based on estimates on interpolation error for polynomial preserving operators. Detailed convergence analysis is giv...
متن کاملFinite element methods for a singularly perturbed transmission problem
We consider a one-dimensional singularly perturbed transmission problem with two different diffusion coefficients. The solution will contain boundary layers only in the part of the domain where the diffusion coefficient is high. We derive and analyze various finite element approaches for the approximation of the solution and conduct numerical computations that show the robustness (or lack there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 41 شماره
صفحات -
تاریخ انتشار 2015